
Introducing Microsoft Silverlight

Dragos-Paul POP

Faculty of Computer Science for Business Management,

 Romanian – American University, Bucharest, Romania

ABSTRACT

 Despite all the wonderful things you can

say about HTML, CSS, and JavaScript, they

form a pretty poor environment for developing

modern sites and applications. If you care

about your content working on most web

browsers (or even just Internet Explorer and

Firefox), accommodating their differences can

be maddening. Many techniques and

JavaScript libraries have been developed and

shared over the years that can reduce this

frustration, but none of them are silver bullets.

In addition to browser differences, the

graphical capabilities of HTML are too

limiting for many user experiences that people

want to create. Drawing a simple line,

incorporating video, and a number of other

things are extremely difficult or impossible

with HTML alone. It’s not that these

technologies were poorly designed, but simply

that they were designed for hyperlinked

documents rather than the extremely rich

presentations that most people want to create

on the Web these days.

1. INTRODUCTION

 Although the Web is easily the most

popular environment for business software,

there are some things that web applications

just can’t do, or can’t do very well. Even if

you outfit your web pages with the latest

cutting-edge JavaScript, you won’t be able to

duplicate many of the capabilities that desktop

applications take for granted, such as

animation, sound and video playback, and 3D

graphics. And although you can use JavaScript

to respond on the client to focus changes,

mouse movements, and other ―real-time‖

events, you still can’t build a complex

interface that’s anywhere near as responsive as

a window in a rich client application.

 Considering these issues, it’s no wonder

that Adobe Flash has been so successful.

 Whether someone wants to create a

professionally designed website, an online

game (or any number of other applications), or

even a simple advertisement, Flash has been a

natural choice for escaping the limitations of

HTML. The Flash development experience

leaves much to be desired, however. Flash (the

runtime environment, as well as the tool)

suffers from the same basic problem as

HTML: Many people are trying to use it for

creating rich applications, but it was originally

designed for something else (in this case,

simple animations).

2. ABOUT SILVERLIGHT

 Microsoft’s new Silverlight is a direct

competitor to Flash. Like Flash, Silverlight

allows you to create interactive content that

runs on the client, with support for dynamic

graphics, media, and animation that goes far

beyond ordinary HTML. Also like Flash,

Silverlight is deployed using a lightweight

browser plug-in and supports a wide range of

different browsers and operating systems. At

the moment, Flash has the edge over

Silverlight, because of its widespread adoption

and its maturity. However, Silverlight boasts a

few architectural features that Flash can’t

match—most importantly, the fact that it’s

based on a scaled-down version of .NET’s

common language runtime (CLR) and thus

allows developers to write client-side code

using pure C#.

 The heart of the plugin is the graphics

subsystem, which supports a certain subset of

WPF. It also includes the codes responsible

for displaying audio and video content.

 The architecture of Silverlight is quite

complex, but it can be broken down into big

chunks. The presentation system takes care of

everything UI, including animation, text

rendering, and audio/video playback. The

plugin itself integrates into the browser so that

the content can be shown, as well as accessed

using the JavaScript DOM. Finally, using

some JavaScript code (or, optimally, the

ASP.NET AJAX framework), Silverlight

applications can be enriched to access server

APIs like web services.

 Silverlight 1.0 applications are created with

a mixture of XAML (Extensible Application

Markup Language), HTML, and JavaScript, so

they are easy to integrate into existing web

content and compatible with popular AJAX

libraries and techniques.

 The Silverlight plug-in has an impressive

list of features, some of which are shared in

common with Flash, and some which are

entirely new and even revolutionary. They

include the following:

 Widespread browser support: It’s too

early to tell how well the Silverlight

browser works on different platforms.

Currently, the builds of Silverlight 1.1

work on Windows Vista and Windows XP

(in the PC universe) and OS X 10.4.8 or

later (in the Mac world). The minimum

browser versions that Silverlight 1.1

supports are Internet Explorer 6, Firefox

1.5.0.8, and Safari 2.0.4. Although

Silverlight 1.1 doesn’t currently work on

Linux, the Mono team is creating an open-

source Linux implementation of Silverlight

1.0 and Silverlight 1.1. This project is

known as Moonlight, and it’s being

developed with key support from

Microsoft.

 Lightweight: In order to encourage

adoption, Silverlight is installed with a

small-size setup (about 4 MB) that’s easy

to download. That allows it to provide an

all-important ―frictionless‖ setup

experience, much like Flash (but quite

different from Java).

 2D Drawing: Silverlight provides a rich

model for 2D drawing. Best of all, the

content you draw is defined as shapes and

paths, so you can manipulate this content

on the client side. You can even respond to

events (like a mouse click on a portion of a

graphic), which makes it easy to add

interactivity to anything you draw.

 Animation: Silverlight has a time-based

animation model that lets you define what

should happen and how long it should take.

The Silverlight plug-in handles the sticky

details, like interpolating intermediary

values and calculating the frame rate.

 Media: Silverlight provides playback of

Windows Media Audio (WMA), Windows

Media Video (WMV7–9), MP3 audio, and

VC-1 (which supports high-definition).

You aren’t tied to the Windows Media

Player ActiveX control or browser plug-

in—instead, you can create any front-end

you want, and you can even show video in

full-screen mode. Microsoft also provides a

free companion hosting service (at

http://silverlight.live.com) that gives you 4

GB of space to store media files.

 The CLR: Most impressively, Silverlight

includes a scaled-down version of the

CLR, complete with an essential set of core

classes, a garbage collector, a JIT (just-in-

time) compiler, support for generics, and

so on. In many cases, developers can take

code written for the full .NET CLR and use

it in a Silverlight application with only

moderate changes.

 Web service interaction: Silverlight

applications can call old-style ASP.NET

web services (.asmx) or WCF (Windows

Communication Foundation) web services.

They can also send manually created XML

requests over HTTP.

3. SILVERLIGHT ADOPTION

 Silverlight is very new. For that reason, it’s

difficult to predict how well Silverlight will

stack up against Flash’s real strength:

adoption.

 At present, Silverlight is only on a fraction

of computers. However, Microsoft is

convinced that if compelling content exists for

Silverlight, users will download the plug-in.

There are a number of factors that support this

argument. Flash grew dramatically in a short

space of time, and Microsoft has obvious

experience with other web-based applications

that have started small and eventually gained

wide adoption.

 A key point to keep in mind, when

considering the Silverlight development model

is that in most cases you’ll use Silverlight to

augment the existing content of your website

(which is still based on HTML, CSS, and

JavaScript). For example, you might add

Silverlight content that shows an

advertisement or allows an enhanced

experience for a portion of a website (such as

playing a game, completing a survey,

interacting with a product, taking a virtual

tour, and so on). Silverlight pages may present

content that’s already available in the website

in a more engaging way.

 Although, it’s easily possible to create a

Silverlight-only website, it’s unlikely that

you’ll take that approach. The fact that

Silverlight is still relatively new, and the fact

that it doesn’t support legacy clients (most

notably, it has no support for users of

Windows ME, Windows 2000, and Windows

98) mean it doesn’t have nearly the same

reach as ordinary HTML.

4. SILVERLIGHT VS FLASH

 Some people refer to Microsoft’s

Silverlight technology as a ―Flash killer,‖ but

I’m not sure whether that is really true.

However, the similarities are striking. Both

Adobe Flash (formerly Macromedia Flash)

and Silverlight come as browser plugins. Both

support vector graphics, audio and video

playback, animations, and scripting support.

 The technology basis is different. Flash

uses a semi-open binary format, Silverlight is

based on WPF. Before it was called

Silverlight, the technology was codenamed

WPF/E (Windows Presentation Foundation

Everywhere). And thanks to good browser

support, Silverlight can really be run

everywhere, at least in theory.

 In practice, the penetration of the browser

plugin is a key issue. At the time of this

writing, Silverlight plugins are available for

the Windows platform (no surprise here) and

support the two big players, Microsoft Internet

Explorer and Mozilla Firefox. Also, a Mac OS

X plugin exists that targets Safari and Mozilla

Firefox on the Apple platform.

 According to Microsoft, other platforms

were investigated, but given that Windows has

such a high market share in terms of desktop

operating systems and Mac OS X is number

two on that list, these browsers were given

priority.

 The most successful browser plug-in is

Adobe Flash, which is installed on over 90

percent of the world’s web browsers. Flash

has a long history that spans more than ten

years, beginning as a straightforward tool for

adding animated graphics and gradually

evolving into a platform for developing

interactive content. It’s perfectly reasonable

for ASP.NET developers to extend their

websites using Flash content. However, doing

so requires a separate design tool, and a

completely different programming language

(ActionScript) and programming environment

(Flex).

 Silverlight aims to give .NET developers a

better option for creating rich web content.

Silverlight provides a browser plug-in with

many similar features to Flash, but one that’s

designed from the ground up for .NET.

Silverlight natively supports the C# language

and uses a range of .NET concepts. As a

result, developers can write client-side code

for Silverlight in the same language they use

for server-side code (such as C# and VB), and

use many of the same abstractions (including

streams, controls, collections, generics, and

LINQ).

 Let’s take a look at some key points in the

Silverlight vs. Flash war:

4.1 ANIMATION

 The Flash format itself has no notion of

animation other than transformation matrices.

You can apply a matrix to an element on a per

frame basis to move it around. Want to move

something across the screen in 3 seconds?

Calculate how many frames 3 seconds will

take, then calculate the matrixes required for

each frame along the way.

 Silverlight supports the WPF animation

model, which is not only time based instead of

frame based, but lets you define the start and

end conditions and it will figure out how to get

there for you. No need to deal with matrixes.

No need to calculate positions on various

frames.

4.2 SHAPES

 Flash stores its shapes using binary shape

records. In order to write shape definitions,

you will need to either license a 3
rd

 party Flash

file format SDK, or build your own. It isn’t

too difficult, but it does require a bit of a

learning curve and the ability to manipulate

things at the bit level, since shape records

don’t align on byte boundaries. Needless to

say, it isn’t the kind of thing most people can

write and have all debugged in one afternoon.

 Silverlight uses XAML. XAML is text

based and can be output using a simple XML

object. No need to buy special libraries to

write files. No need to write your own

libraries. Just stream some text to a file and

you’re done--easily the type of thing that can

be debugged and finished in an afternoon.

4.3 TEXT

 Flash stores its fonts glyphs using the same

exact shape definitions that are used for any

other shape. The player itself does not

understand TTF files, so you’ll end up digging

deep into the Win32 APIs and the fairly vague

definitions in the Flash file format

documentation to come up with something

that sort of does the trick. You’ll probably

spend ages trying to deal with all the

intricacies of fonts, because it turns out that

typography is actually fairly complex… and

you will have to deal with all those

complexities yourself.

 WPF/E lets you embed true type font

information directly into your projects, and

download that information with the

downloader object. No need to do anything

special. No need to handle anything yourself.

4.4 VIDEO/AUDIO

 Flash supports multiple video formats. The

latest codec is really high quality and the

bandwidth usage is nice. There is one problem

though if you are creating a tool that outputs

Flash content… the formats it supports aren’t

really used by anyone else. The original video

codec, Sorenson’s proprietary H.263

implementation is a mutant version of H.263.

The compression follows the spec fairly

closely, but there are a bunch of features

dropped out and you can’t exactly just go find

a complete spec on how to build your own

encoder. The later codec from On2 puts you in

an even worse position. Licensing Sorenson’s

codec isn’t that expensive, but On2 will rape

you with fees. They are relying on revenue

from licensing the codec used by Flash to

revive their $2 a share stock price. It is also a

completely proprietary format (where at least

the Sorenson one was loosely based on a

standard). The audio formats Flash supports

are all proprietary, except for ADPCM, which

no one uses because of its horrible

compression, and MP3, which is decent but

dated, and still requires licensing fees and 3
rd

party conversion libraries.

 Silverlight implements industry standard

VC-1 codec for video, as well as offering

support for WMV and WMA. Just about

everyone already has Windows Movie Maker,

but if they don’t it’s not a big deal. Why?

Because Microsoft makes available a free

Encoder SDK for producing WMA and

WMV. So, not only are you using formats that

people are more likely to be able to encode

themselves, but Microsoft also provides your

product with SDKs if you want to do the

encoding yourself. The best part about it is

that Microsoft doesn’t rely on WMA/WMV

licensing revenue to keep themselves alive, so

not only is it easier to integrate, but it’s also

cheaper.

4.5 SCRIPTING

 You can reuse C# classes from your tool

inside your exported content. There is no

development environment out there for

creating real desktop applications which is

based on ActionScript. If you go the Flash

route, this means that all your classes and

objects have to be written twice. You need

.NET classes to handle the author time

experience and Flash classes to handle the run-

time. If you have server components, once

again you need to switch back to .NET and

throw out all the classes that the run time is

using. For example, let’s say you are creating

a tool that outputs rich media quizzes. With

Silverlight / .NET, the same entity classes you

use to deal with results in the player could be

reused on the server side. With Flash, you’d

have to write all that logic 2x and keep it in

sync as your tool changes.

4.6 TOOLS

 You can create Silverlight content with the

same tools you use on a daily basis. Visual

Studio.NET is by far the most powerful and

most popular IDE. You can potentially have

all the code for the server components, the

authoring tool components, and the

runtime/player components inside the same

project. No extra skills required. No needing

to hire some special Flash guru to do the

graphics junk. Every developer can contribute

to every part of your application.

5. CONCLUSION

 Silverlight is a new technology that’s

evolving rapidly, and it’s full of stumbling

blocks for business developers who are used to

relying on a rich library of prebuilt

functionality. Not only does Silverlight lack

any sort of data binding features, it also

includes relatively few ready-made controls.

 Some basics, like buttons, are relatively

easy to build yourself. But others, like text

boxes, are not. At present, Silverlight is

primarily of interest to developers who plan to

create a highly graphical, complete

customized user interface, and who aren’t

afraid to perform a fair bit of work.

 REFERENCES

[1] Matthew MacDonald, ―Silverlight and ASP.NET

Revealed‖, Apress 2007

[2] Christian Wenz, ―Essential Silverlight‖, O’Reilley

2007

[3] Adam Nathan, ―Silverlight 1.0 Unleashed‖, Sams

2008

[4] OnFlex, http://www.onflex.org/ted/2007/04/m-

silverlight-vs-adobe-flash-player.php

[5] ASP .NET

http://weblogs.asp.net/jezell/archive/2007/05/03/silverli

ght-vs-flash-the-developer-story.aspx

[6] MySites Advisor, http://blogs.mysites-

advisor.com/index.php/2007/06/03/silverlight-vs-flash/

